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This study aims to evaluate and compare the efficiency of two segmentation techniques, K-
Means clustering, and Watershed segmentation, in the detection of brain tumors using MRI
scans. Accurate segmentation of brain MRI images is crucial for the diagnosis and treatment
of brain tumors. Numerous techniques have been employed for this purpose, but a clear
comparison between these methods remains underexplored. This research provides a
comparative analysis of K-Means clustering and Watershed segmentation to identify the
superior technique for brain tumor detection. The study utilized MRI scans of patients with
three different brain diseases: metastatic bronchogenic carcinoma, anaplastic astrocytoma,
and sarcoma. Morphological operations were applied for skull removal, followed by
segmentation into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and
tumor areas using both K-Means clustering and Watershed segmentation. The segmented
regions were quantified, and the efficiency of each technique was assessed through
percentage calculations and visual representation via pie charts. The results indicate that K-
Means clustering outperforms Watershed segmentation in accurately identifying and
segmenting the tumor areas as well as the GM, WM, and CSF regions. For metastatic
bronchogenic carcinoma, K-Means detected an average tumor area of 12.74%, compared to
Watershed's 6.99%. Similar trends were observed for anaplastic astrocytoma and sarcoma,
with K-Means consistently providing higher accuracy and clearer segmentation boundaries.
K-Means clustering proves to be a more effective technique for brain tumor detection and
segmentation in MRI scans compared to Watershed segmentation. The superior performance
of K-Means is attributed to its ability to classify regions without the limitations associated
with the structuring elements required by Watershed segmentation. Future research should
further refine these techniques and explore their integration into automated diagnostic
systems.
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1. INTRODUCTION

There are many researches about the segmentation of Brain MRI along with many techniques
are experienced but there is no any clear comparison between the techniques to find out the
best technique. This research is about the Brain MRI segmentation for Tumor detection along
with the comparison between two techniques which are k-Means clustering and Watershed
segmentation. The system’s input is Brain MRI of the patients of Brain tumor. Three diseases
are examined in the system for the clarity of results. Morphological operations have been used
for the removal of skull in the Brain MRI from main part of the Brain. The process is continued
with the segmentation of the Brain into four parts as White matter (WM), Gray Matter (GM),
Cerebrospinal Fluid (CSF), and Defected area though both techniques. Then system will
calculate the defected area and mark the boundary of the tumor area in the Brain MRI. For the
comparison of the technique’s percentages will be calculated of WM, GM, CSF and tumor to
present the difference and efficiency of the better technique. Result of tumor area and
comparison between techniques shown by pie charts. Fig 1 shows the block diagram of system.

Classification into Marking boundary of tumor and

Input Skull
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A

GM. WM. CSF [ displaying results individually of
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Percentage calculation and
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Fig 1: Block Diagram of System
2. Material and Method
2.1 Literature Review

Implementation of a neuro-fuzzy segmentation process of the MRI data is presented in the
study to detect various tissues like white matter, gray matter, CSF and tumor. The advantage of
hierarchical self-organizing map and fuzzy ¢ means algorithms are used to classify the image
layer by layer. The lowest level weight vector is achieved by the abstraction level. This has also
achieved a higher value of tumor pixels by this neuro-fuzzy approach. Neuro fuzzy technique
shows that MRI brain tumor segmentation using HSOM-FCM also perform more accurate one

(1).
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Peak detection technique was used to generate the contour lines of the tumor area in the
image of a brain slice. The tumor area was scanned and correlated with a reference image. The
resultant cross correlation was plotted with respect to spatial coordinates. The peak values
represented the normal and tumor tissue transitions and they were plotted in contour form to
define the outlines of the tumor area (2).

Another efficient method for automatic brain tumor segmentation for the extraction of tumor
tissues from MR images, it combines Perona and Malik anisotropic diffusion model for image
enhancement and Kmeans clustering technique for grouping tissues belonging to white matter,
gray matter, CSF and tumor. The proposed method uses T1, T2 and PD weighted gray level
intensity images (3).

Some other research is Spatial normalization and segmentation of infant brain MRI data based
on adult or pediatric reference data may not be appropriate due to the developmental
differences between the infant input data and the reference data. In this study, have
constructed infant templates and a priori brain tissue probability maps based on the MR brain
image data from 76 infants ranging in age from 9 to 15 months. They employed two processing
strategies to construct the infant template and a priori data: one processed with and one
without using a priori data in the segmentation step. Using the templates, comparisons
between the adult templates and the new infant templates are presented. Tissue distribution
differences are apparent between the infant and adult template, particularly in the gray matter
(GM) maps. The infant a priori information classifies brain tissue as GM with higher probability
than adult data, at the cost of white matter (WM), which presents with lower probability when
compared to adult data. The differences are more pronounced in the frontal regions and in the
cingulated gyrus. Similar differences are also observed when the infant data is compared to a
pediatric (age 5 to 18) template. The two-pass segmentation approach taken here for infant
T1W brain images has provided high quality tissue probability maps for GM, WM, and CSF, in
infant brain images (4).

Computer Aided Detection System (CAD) in used to detect tumor in Brain MRI automatically in
research. Mainly, Image enhancement and brain segmentation steps are studied in this
research (5).

Fuzzy classification, symmetry analysis and spatially constrained deformable models are used in
the investigation to segment the brain from 3D images. The main preference is of segment then
to detect tumor through selecting asymmetric areas with respect to the approximate brain
symmetry plane and fuzzy classification (6).

2.2 Brain Images
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The technique which is commonly used in radiology as a primarily imaging methodology for
medical use in visualizing the function, hard and soft tissues of body is Magnetic resonance
imaging (MRI). In the comparison of computed tomography (CT) Scan, the MRI provides greater
contrast between body’s soft tissues in different pats. MRI uses the strong magnetic field which
is use to align the nuclear magnetization in atoms of hydrogen in water in the body but not like
CT scan which uses ionizing radiation (7). Whereas, MRI normally provide the 2-dimensional
images but for some cases MRI can be used to generate 3 dimensional images (8). MRl is also
use for the sensitive parts of the body as heart, eye and brain.

MRI has many capturing techniques like T1, T2 weighted and proton density. Different tissues
are captured by different techniques depends upon the part of body. Whereas, T1 weighted
gives better contrast of gray matter and white matter, while T2 weighted are suitable for
edema which is sensitive to water content and gives the better and enhanced contrast of GM
and WM (9). Another technique called T2* weighted increased the contrast of certain kind of
tissues which are venous blood. It is good in present the flow of blood and visualizing the blood
(10). The capturing technique which is the input of this system is T2 Weighted with the plane of
Axial.

At least ten images of three different diseases are used for the system to test and efficiency and
difference between k-Mean and Watershed segmentation. MRI’s are taken from the library of
Harvard University “The Whole Brain Atlas” (11). Samples MRI are shown in Fig 2 below.

(i)Diseasel:Metastatic (ii)Disease2:Anaplast (iii)Disease3: Sarcoma (14)
bronchogenic carcinoma (12) Astrocytoma (13)

Fig 2: Three Diseases used to test the system by “The Whole Brain Atlas” (11)
2.3 Methodology

As discussed above, the study uses MRI of Brain for the input of the system. The MRI contains
the skull part in it and for the processing the skull have to be removed first from the Brain area.
Morphological operations of digital image processing are used for removing the skull from the
brain.

2.3.1 Morphological Operations
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Erosion and dilation methods are used for skull removal. Erosion is used to erode the binary or
grayscale image and retrieve the eroded image as a result. A structuring element needs to be
applying on the inputted image or MRI to gain the required purpose. A Structuring element is
the matrix made of zeros and ones according to the shape and need of the image. Equation 1:
shows the formula use for the erosion process.

AGB = { B } ... Equation 1

Ais the name given to the inputted MRI which has to be erode and B represents the structuring
element (15).

Dilation process is same as erosion. Dilation is used to recover the important holes and missing
parts lost by the process of erosion. Dilation is use to grow or thicken the edge and parts of the
image. Mathematically Dilation is represented in Equation 2:

A B={ B } ... Equation 2
Where A again symbolizes the inputted image and B is structuring element (15).

The study use fixed along with user flexible structuring element. The Structuring element can
be change using GUI of the study. The result of the erosion function on the original image is as
bellow in Fig 3:

R S Iwing | st
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(i) Original MRI (12) | (ii) Eroded MRI
Fig 3: Applying Erosion on Original MRI

After applying erosion, dilation is applied to retrieve the side effects of erosion (lost data from
brain part). The Result of dilation function is represented in Fig 4:
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| (i) Original MRI | (ii) Dilated MRI
Fig 4: Applying Dilation on Eroded MRI

After removing skull, process proceeds with segmentation into four part WM, GM, CSF and
Tumor through k-Means clustering and afterwards Watershed for comparison.

2.3.2 K-Means Clustering

K-Means is a clustering technique to group or classification of K number groups based on the
attributes of the objects. K-Means clustering work by calculating the distance between the
objects and classify the objects in one group who have minimum distance in between.
Moreover if the data is bigger than K numbers of clusters then calculate the centroid and then
calculate the minimum distance of objects of each centroid. The data is said to be of the group
which has the minimum distance. The calculation of centroids and objects minimum distance is
calculated continuously until every object moved to its specific classification (16). The brain MRI
is divided into four classification as WM, GM, CSF and defected area. Fig 5 represents the
clusters obtained by K-Means clustering.

ofeck i enster 1" Timar Aes"

chjects in cluster 2 “iithite Matter (AT

(i) Defected Area

(ii) White Matter (WM)

objects in cluster 3 "Gy higtter (Ghl)"

objects in cluster 4 "Cerbrospiral Fliod (CSFY*

(iii) Gray Matter (GM)

(iv) Cerebrospinal fluid (CSF)

Fig 5: Segments through K-Means
2.3.3 Watershed Segmentation
The morphological based segmentation of the image is Watershed segmentation. The method

is normally used to preprocess the grayscale image. Watershed works with the difference of
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high valued pixel and low valued pixel (15). A gradient magnitude is used as the tomography
surface of the image in Watershed classification. There are different ways of lines of watershed.
If the gradients of images are estimated correctly gives the best result in dividing into
classifications (17) . Segmented parts are the result of watershed segmentation. Moreover,
there are three techniques used in watershed segmentation which are distance transform,
gradient and marker-controlled watershed. The technique used in the study is Watershed
segmentation through gradients. The Fig 6 shows the segmentation of MRI using Watershed.

ohjects in cluster 1"Tumor area” ohjects in cluster 3"White Matter"

1

(i) Defected Area (ii) White Matter (WM)

ohjects in cluster 2"CSFE"

objects in cluster 4" Gray Matter”

(iii) Gray Matter (GM) (iv) Cerebrospinal fluid (CSF)
Fig 6: Segments through Watershed

Comparison between k-Means and Watershed

After segmentation study calculates the percentage of defeated area detected by both
techniques along with WM, GM and CSF. The results are shown in pie charts n Fig 7.
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Brain image detected through k-Means
Defected area = 12.45 %

Brain image cdetected through Watershed
Defected area = 6.42 %

Gray Matter: 45

Gray Matter: 54

Defected Area: 6%
erebrospinal Fluid: 7%

Fig 7: Comparison between k-Means and Watershed

3. Results

Defected Area: 12%
rebrospinal Fluid: 4%

hite Matter: 39%

ite Matter: 33%

Through the test of data set taken from the “The Whole Brain Atlas”, the study’s result is in the
favor of k-Means clustering as a better technique for segmentation and tumor detection. Ten

images of each disease are examined in the system for calculating the total and average of

defected area, GM, WM and CSF.

3.1 Metastatic bronchogenic carcinoma

Data of three patients is taken for test. First is Metastatic bronchogenic carcinoma. The patient

used to be addict of tobacco from a long period and then start suffering from headaches

duration of one month before the MRIs were taken. The patient found in trouble in words she

speaks (12). The Table 1 represents the percentage of GM, WM, CSF and defected area via

watershed.
Images Sr. No. Gray Matter White Matter CSF Defected Area
1 12.3013 67.70546 11.66353 8.32971
2 53.5788 33.44695 6.552157 6.422101
3 81.89831 7.754216 3.291603 7.055868
4 28.64213 62.20004 2.487004 6.670826
5 85.45538 7.711857 2.633114 4.19965
6 63.09988 27.13668 2.74292 7.020519
7 14.4742 71.54801 3.156978 10.82081
8 80.1285 10.28414 3.791512 5.795856
9 11.72198 77.05628 4.050024 7.171717
10 53.5788 33.44695 6.552157 6.422101
Total 484.8793 398.29058 46.921 69.90916
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Average

Whereas, in Table 2 k-Means represent better results as compares to Watershed.

48.48793

39.829058

4.6921

6.990916

Table 1: Disease 1 results through Watershed

Images Sr. No. Gray Matter White Matter CSF Defected Area

1 42.45543 39.537131 5.276127 12.73131

2 45.01301 38.963136 3.569827 12.45403

3 48.13916 35.662579 2.201499 13.99676

4 51.89021 29.028904 1.854855 17.22603

5 53.92884 27.256062 1.816515 16.99858

6 57.84721 24.639647 2.107004 15.40614

7 55.48879 26.566514 2.442848 15.50185

8 61.4605 25.522577 2.750882 10.26604

9 60.60606 30.4329 2.457912 6.503127

10 53.84049 35.552159 4.296145 6.311202
Total 530.6697 313.16161 28.77361 127.3951
Average 53.06697 31.316161 2.877361 12.73951

Table 2: Disease 1 results through k-Means

3.2 Anaplastic Astrocytoma

Secondly disease two is Anaplastic Astrocytoma. The patient is 51 years old and experiencing

the hemi-paresis in right side and visual loss (13). Table 3 contains the results calculated from

watershed.
Images Sr. No. Gray Matter White Matter CSF Defected Area

1 5.79123281 75.24103 5.546985 13.42075

2 2.63812304 68.73175 3.654449 24.97567

3 0.99025464 72.45625 3.992455 22.56104

4 30.8217771 45.04879 3.251156 20.87827

5 10.4969007 65.06453 2.91637 21.5222

6 24.4512532 49.63584 3.315084 22.59782

7 24.4512532 49.63584 3.315084 22.59782

8 24.4512532 49.63584 3.315084 22.59782

9 24.4512532 49.63584 3.315084 22.59782

10 13.1140864 67.34715 2.652344 16.88642

Total 161.657388 592.4329 35.27409 210.6356
Average 16.1657388 59.24329 3.527409 21.06356

Where, Table 4 represents same dataset through k-Means.

Table 3: Disease 2 results through Watershed
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Images Sr. No. Gray Matter White Matter CSF Defected Area

1 48.065304 26.50084 3.914385 21.51948

2 47.7619202 24.48913 2.573251 25.17569

3 45.9813476 25.72566 3.154144 25.13885

4 47.6065742 22.49615 2.634823 27.26246

5 53.4600142 22.48755 2.301595 21.75084

6 53.6541263 26.01838 2.250239 18.07725

7 53.6541263 26.01838 2.250239 18.07725

8 53.6541263 26.01838 2.250239 18.07725

9 53.6541263 26.01838 2.250239 18.07725
10 51.7916457 30.19124 2.365375 15.65174
Total 509.283311 255.9641 25.94453 208.8081
Average 50.9283311 25.59641 2.594453 20.88081

Table 4: Disease 2 results through k-Means

3.3 Sarcoma

Thirdly, the disease third is Sarcoma. The patient was of 22 years and suffered Ewing’s sarcoma
(14). Again Table 5 shows results from watershed.

Images Sr. No. Gray Matter White Matter CSF Defected Area

1 38.7814506 54.77092 3.792017 2.655608

2 79.3366757 12.58002 3.050521 5.032781

3 44.0543341 15.42919 6.477111 34.03937

4 15.2797534 64.87672 4.634898 15.20863

5 33.0412617 48.17588 2.700335 16.08252

6 27.8912124 52.93127 2.777207 16.40031

7 52.5861699 24.16191 4.026269 19.22565

8 38.6842226 45.,85952 4.440978 11.01528

9 25.3593991 25.80709 7.202905 41.6306

10 27.4919614 45.00938 12.96222 14.53644
Total 382.506441 389.6019 52.06446 175.8272
Average 38.2506441 38.96019 5.206446 17.58272

Table 5: Disease 3 results through Watershed
Now, Table 6 shows calculation through k-Means

Images Sr. No. Gray Matter White Matter CSF Defected Area

1 52.6855138 36.21357 2.643646 8.457275

57



2 52.0208253 33.89125 2.364057 11.72387

3 52.219792 32.01719 3.38053 12.38249

4 51.0589537 31.25494 3.161056 14.52505

5 54.046519 25.9957 2.50916 17.44862

6 54.1473234 28.79915 1.943223 15.11031

7 55.659527 30.27858 2.347942 11.71395

8 50.5574162 34.40382 2.954535 12.08423

9 48.4156594 36.53186 4.342635 10.70984
10 48.1798109 35.85461 5.786107 10.17947
Total 518.991341 325.2407 31.43289 124.3351
Average 51.8991341 32.52407 3.143289 12.43351

Table 5: Disease 3 results through k-Means

By the thorough study of the results, there is a clear difference in between the average and
total amount of GM, WM, CSF and defected through Watershed and k-Means clustering.
Watershed segmentation lacks in providing the proper calculation of gray matter and white
matter. Some area of the defected part is also missing in watershed segmentation but k-Means
providing the better results in every segment GM, WM, CSF and defected area. K-Means is
successful in providing the approximate values of GM and WM containing in MRI along with the
defected area.

4., Discussion

As considering the results watershed segmentation failed to segment the gray matter and white
matter properly. Moreover, the defected are which is not joint to another defected area in
same MRI is also missing when detection technique is watershed. While comparing the
watershed technique with k-Means the study found that k-Means has the added benefit of
separating gray matter and white matter properly. The two defected areas which are apart
from bigger area in same MRI are easily detected by k-Means.

The noticed limitation with watershed segmentation is its method of using structuring element
for classification. The structuring element used in the study is same for every image but
watershed do not support same structuring element for every image. Let see in Fig 9, there is
the representation of different structuring element on same image which provide the clear
difference. And Fig 10 shows the same structuring element but different image.

Where, Fig 8 contain the original image which being processed.
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Fig 8: Original MRI (14)

objects in cluster 1"Tumor area” weds R oS Er TnHE MalEr it b o it e i

(i) Defected area (ii) White Matter (iii) Gray Matter

Fig 9: Segments through Watershed using same Structuring Element

mers M ok kr 1T TLmer e cects 1 chiEtr T ety ol s noluser ey bt

(i) Defected area (ii) White Matter (iii) Gray Matter

Fig 10: Segments through Watershed using Different Structuring Element and same image

Considering both Figs 9 and 10 there s a clear difference between segments extracted through
watershed. In Fig 9 defected area is not completed segmented and the gray matter is still
present in the white matter segment image. For overcome the difference by changing only 2
points in structuring element provide more accurate defected area but problem increases in
white matter and gray matter segments. Still some of the defected are left from segmented to
defected area and it is still the part of white matter in the figure. Furthermore, Fig 11 shows the
segments of same image through k-Means clustering and the results are clear. The defected are
is clearly and accurately separated from the remaining brain part. There is no limitation of
structuring element in k-Means clustering. This provides the clarity of efficiency of k-Means
clustering technique over Watershed segmentation.
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(i) Defected area (i) Gray Matter (iii) White Matter

Fig 11: Segments through K-Means on the same Image

The charts below show the clear difference of both techniques. Charts are building by using
total and average of all three diseases regarding segments which are GM, WM, CSF and
defected area. The chart shows that K-Means extract the groups of same kind of data
accurately but watershed has the limitations in segmentations. It failed to provide the clear
distinction between segments. Watershed missed a number of data regarding gray matter or
white matter and mixed up the gray matter in white and defected area in white matter each
does not provide the accurate or approx total and average data. Hence this proves that K-
Means is a better techniques for segmentation regarding this study.
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[1]
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[3]
[4]
[5]

Fig 12: Chart shows the difference between K-Means and Watershed
5. Conclusion

As the study is conducted to find out the better technique for detecting tumor through Brain
MRI, the results and discussion sessions provides the detail explanation about K-Means as the
better techniques over watershed. K-Means is proved as the efficient method of segmentation.
K-Means covers more and accurate area of GM, WM, CSF and defected area rather than
watershed. There is no limitation of structuring element in K-Means and it works the same for
every image them watershed segmentation.
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